225MHz, Triple, 2-Channel Video Multiplexer-Amplifier

General Description

The MAX4027 is a triple, wideband, 2-channel, noninverting gain-of-two video amplifier with input multiplexing, capable of driving up to two back-terminated video loads. The MAX4027 features current-mode feedback amplifiers configured for a gain of two (+6dB) with a $-3 d B$ large-signal bandwidth of 200 MHz . The device has low $\left(0.012 \% / 0.014^{\circ}\right)$ differential gain and phase errors, and operates from $\pm 5 \mathrm{~V}$ supplies.
The MAX4027 is ideal for use in broadcast and graphics video systems because of the low 2 pF input capacitance, channel-to-channel switching time of only 15ns, and wide 62 MHz , large-signal 0.1 dB bandwidth. Highimpedance output disabling allows the MAX4027 to be incorporated into large switching arrays with minimal interaction with the source. Specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range, the MAX4027 is available in 14-pin SO and TSSOP packages.

Applications
Video Source Selection (Multiplexing)
Picture in Picture (PIP) Insertion
Crosspoint Expansion
Coaxial Cable Drivers
Supports VGA to UXGA (1600 x 1200) Resolution
Enterprise Class (Blade) Servers
Keyboard-Video-Mouse (KVM)
Typical Operating Circuit

Pin Configuration

TOP VIEW

225MHz, Triple, 2-Channel Video Multiplexer-Amplifier

ABSOLUTE MAXIMUM RATINGS

Positive Supply Voltage (VCc to GND) \qquad
Negative Supply Voltage (VEE to GND)
Amplifier Input Voltage (IN__).........(VEE - 0.3 V) to (VCC +0.3 V)
Digital Input Voltage ($\overline{\mathrm{EN}}, \overline{\bar{A}} / \mathrm{B}$)-0.3V to (VCC +0.3 V)
Output Short Circuit to GND (Note 1).
1)........................Continuous

Output Short Circuit to VCC or VEE \qquad
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
14-Pin TSSOP (derate $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 727 mW
14 -Pin SO (derate $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)................ 667 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature .. $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Note 1: Continuous power-dissipation rating must also be observed.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}^{-_}=0 \mathrm{~V}, \mathrm{RL}=150 \Omega\right.$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 2)

225MHz, Triple, 2-Channel Video Multiplexer-Amplifier

AC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{I N_{-}}=0 \mathrm{~V}, \mathrm{RIN}_{\mathrm{IN}}=75 \Omega\right.$ to GND, RL=150 to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
AMPLIFIER CHARACTERISTICS					
Small-Signal -3dB Bandwidth	BWSS	$\mathrm{V}_{1 \mathrm{~N}_{-}}=20 \mathrm{mV} \mathrm{P}_{-\mathrm{P}}$	225		MHz
Small-Signal Bandwidth for $\pm 0.1 \mathrm{~dB}$ Gain Flatness	BWLS(0.1)	$\mathrm{VIN}_{--}=20 \mathrm{mV} \mathrm{P}_{-\mathrm{P}}$	75		MHz
Large-Signal -3dB Bandwidth	BWLS	$\mathrm{V}_{1 N_{-}}=1 \mathrm{~V}_{\text {P-P }}$	200		MHz
Large-Signal Bandwidth for $\pm 0.1 \mathrm{~dB}$ Gain Flatness	BWLS(0.1)	$V_{1 N_{--}}=1 V_{P-P}$	62		MHz
Slew Rate	SR	$\mathrm{V}_{1 \mathrm{~N}_{-}}=1 \mathrm{~V}_{\text {P-P }}$	1100		V/us
Settling Time to 0.1\%	ts	$\mathrm{V}_{1 \mathrm{~N}_{-}}=1 \mathrm{~V}_{\text {P-P }}$	15		ns
Differential Gain Error	DG	5-step modulated staircase (Note 4)	0.012		\%
Differential Phase Error	DP	5-step modulated staircase (Note 4)	0.014		degrees
Delay Between Channels	tD	$\mathrm{V}_{1 N_{--}}=1 \mathrm{~V}_{\text {P-P, }} \mathrm{t}_{\mathrm{R}}=100 \mathrm{ps}$	0.1		ns
Channel-to-Channel Crosstalk	XTALK	$\mathrm{V}_{1 N_{-}}= \pm 1 \mathrm{~V}_{\text {P-P }}, \mathrm{f}=10 \mathrm{MHz}$	-61		dB
$\overline{\text { A } / B ~ C r o s s t a l k ~}$		$\mathrm{V}_{1 \mathrm{~N}_{-}}= \pm 1 \mathrm{~V}_{\text {P-P },} \mathrm{f}=10 \mathrm{MHz}$	-80		dB
Output Impedance	ZOUT	$\mathrm{f}=10 \mathrm{MHz}$	1		Ω
Total Harmonic Distortion	THD	$V_{\text {OUT_ }}=2 \mathrm{~V}_{\text {P-P, }} \mathrm{f}=10 \mathrm{MHz}$	64		dBc
Off-Isolation	AISO	VOUT_ $=2 \mathrm{~V}_{\text {P-P, }} \mathrm{f}=10 \mathrm{MHz}, \mathrm{R}_{\text {S }}=75 \Omega$	-83		dB
Output Capacitance	Cout	Channel on or off	3		pF
Input Capacitance	Cln	Channel on or off	2		pF
Input-Voltage Noise Density	e_{n}	$\mathrm{f}=100 \mathrm{kHz}$	6.5		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input-Current Noise Density	in	$\mathrm{f}=100 \mathrm{kHz}$	6.5		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
SWITCHING CHARACTERISTICS					
Channel-Switching Time	tsw	(Notes 5, 6)	15		ns
Enable Delay Time	tpDE	(Notes 5, 7)	20		ns
Disable Delay Time	tpDD	(Notes 5, 7)	25		ns
Switching Transient	VTRaN	(Note 8)	260		mVP-P

Note 2: Limits are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design.
Note 3: Disabled output resistance includes the internal feedback network.
Note 4: Input test signal is NTSC composite with 5 -step staircase, of 40 IRE per step, modulated with 3.58 MHz color subcarrier.
Note 5: See the Timing Diagram (Figure 2).
Note 6: Channel-switching time specified for switching between input channels; does not include signal rise/fall times for switching between channels with different input voltages.
Note 7: Output enable/disable delay times do not include amplifier output slewing times.
Note 8: Switching transient measured while switching between two grounded channels.

225MHz, Triple, 2-Channel Video Multiplexer-Amplifier

$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega\right.$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

LARGE-SIGNAL GAIN FLATNESS

POWER-SUPPLY REJECTION RATIO vs. FREQUENCY

SMALL-SIGNAL GAIN FLATNESS
vs. FREQUENCY

CHANNEL-TO-CHANNEL GAIN MATCHING vs. FREQUENCY

OFF-ISOLATION vs. FREQUENCY

CHANNEL-TO-CHANNEL CROSSTALK

225MHz, Triple, 2-Channel Video Multiplexer-Amplifier

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega\right.$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

SMALL-SIGNAL PULSE RESPONSE

OUTPUT IMPEDANCE vs. FREQUENCY

SMALL-SIGNAL PULSE RESPONSE

10ns/div

ENABLE RESPONSE TIME

TOTAL HARMONIC DISTORTION vs. FREQUENCY

LARGE-SIGNAL PULSE RESPONSE
(CLOAD = 20pF)
MAX4027 toc15

225MHz, Triple, 2-Channel Video Multiplexer-Amplifier

Typical Operating Characteristics (continued)

$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega\right.$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

NEGATIVE OUTPUT SWING vs. TEMPERATURE

OUTPUT SHORT-CIRCUIT CURRENT vs. TEMPERATURE

INPUT BIAS CURRENT
vs. TEMPERATURE

POSITIVE OUTPUT SWING
vs. TEMPERATURE

INPUT OFFSET VOLTAGE vs. TEMPERATURE

SMALL-SIGNAL BANDWIDTH
vs. FREQUENCY

225MHz, Triple, 2-Channel Video Multiplexer-Amplifier

Pin Description

PIN	NAME	FUNCTION
1	IN1A	Amplifier 1 Channel A Input
2	IN2A	Amplifier 2 Channel A Input
3	IN3A	Amplifier 3 Channel A Input
4	GND	Power Supply, Analog and Digital Ground. Connect GND to ground plane for best RF performance.
5	IN1B	Amplifier 1 Channel B Input
6	IN2B	Amplifier 2 Channel B Input
7	IN3B	Amplifier 3 Channel B Input
8	EN	Output Enable Logic Input. Drive $\overline{\mathrm{EN}}$ low or leave open for normal operation. Pull $\overline{\mathrm{EN}}$ high to disconnect amplifier output (output is high impedance when disabled). $\overline{E N}$ is internally pulled to GND through a $17 \mathrm{k} \Omega$ resistor.
9	OUT3	Amplifier Output 3
10	V_{EE}	Negative Power-Supply Voltage. Bypass $\mathrm{V}_{\text {EE }}$ to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
11	OUT2	Amplifier Output 2
12	Vcc	Positive Power-Supply Voltage. Bypass $\mathrm{V}_{\text {cc }}$ to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
13	OUT1	Amplifier Output 1
14	$\overline{\mathrm{A}} / \mathrm{B}$	Channel-Select Input. Drive $\overline{\mathrm{A}} / \mathrm{B}$ low or leave open to select channel A for all amplifiers. Pull $\overline{\mathrm{A}} / \mathrm{B}$ high to select channel B for all amplifiers. \bar{A} / B is internally pulled to GND through a $17 \mathrm{k} \Omega$ resistor.

Detailed Description

The MAX4027 combines three $2: 1$ multiplexers with $+2 \mathrm{~V} / \mathrm{V}(+6 \mathrm{~dB})$ closed-loop gain (Avcl) amplifiers. This low-power, high-speed device operates from $\pm 5 \mathrm{~V}$ supplies, while driving up to two back-terminated video loads with very low distortion. Differential gain and phase errors are $0.012 \% / 0.014^{\circ}$ for the MAX4027.
The input multiplexers feature fast 15 ns channelswitching times and small switching transients. The multiplexers also feature high input resistance and constant input capacitance, so overall input impedance can be set by external input-terminating resistors.
Drive $\overline{E N}$ high to place the amplifier outputs in a highimpedance state, and minimize the supply current. This function allows use of multiple mux/amps in parallel to form large switching arrays.
The MAX4027 features an \bar{A} / B input, which selects either channel A or B. Drive \bar{A} / B low to select channel A or drive \bar{A} / B high to select channel B. Channel A is automatically selected if \bar{A} / B is left unconnected.

Truth Tables
Table 1. Input Control Logic

$\overline{\mathbf{A}}$ /B	AMPLIFIER INPUT	FUNCTION
0	IN_A	Channel A Selected
1	IN_B	Channel B Selected

Table 2. Output Control Logic

$\overline{\text { EN }}$	AMPLIFIER OUTPUT	FUNCTION
0	On	Outputs Enabled
1	Off	Outputs High Impedance

Applications Information

Disable Mode

Drive $\overline{E N}$ high to place the MAX4027 in disable mode. Placing the device in disable mode reduces the quiescent current to $17 \mathrm{~mA}(\mathrm{VCC})$ and $15 \mathrm{~mA}(\mathrm{VEE})$ and places the amplifier outputs into a high-impedance state, typi-

225MHz, Triple, 2-Channel Video Multiplexer-Amplifier

cally $1.6 \mathrm{k} \Omega$. Parallel multiple devices to construct larger switch matrices by connecting the outputs of several devices together and disabling all but one of the paralleled amplifiers' outputs. Two internal 800Ω thin-film resistors set the MAX4027 to a fixed gain of +2 . Consider the impedance of the internal feedback resistors when operating multiple MAX4027s in large multiplexer applications.
Drive $\overline{\mathrm{EN}}$ low for normal operation. $\overline{\mathrm{EN}}$ has internal pulldown circuitry. The MAX4027 is enabled when $\overline{E N}$ is unconnected.

Video Line Driver

The MAX4027 is well suited to drive short coaxial transmission lines when the cable is terminated at both ends (Figure 1) where the fixed gain of +2 compensates for the loss in the back termination. Cable frequency response may cause variations in the flatness of the signal.

Input Voltage Range

The guaranteed input voltage range is $\pm 1.25 \mathrm{~V}$. Exceeding this value can cause unpredictable results, including output clipping, excessive input current, and switching delays.

Multiplexer
The input multiplexer (mux) is controlled by a 3.3 V TTL/CMOS-compatible control input (see the Truth Tables). Input capacitance is a constant, low 2 pF and input resistance is $17 \mathrm{k} \Omega$ to GND for all input channels, regardless of whether or not the channel is selected. All logic levels ($\overline{\mathrm{EN}}$ and $\overline{\mathrm{A}} / \mathrm{B}$) default low if left unconnected.

Layout and Power-Supply Bypassing

The MAX4027 has an extremely high bandwidth and requires careful board layout. For best performance, use constant-impedance microstrip or stripline techniques.
To realize the full AC performance of these high-speed amplifiers, pay careful attention to power-supply bypassing and board layout. The PC board should have at least two layers: a signal and power layer on one side, and a large, low-impedance ground plane on the other side. The ground plane should be as free of voids as possible. With multilayer boards, locate the ground plane on an internal layer that incorporates no signal or power traces.
Observe the following guidelines when designing the board regardless of whether or not a constant-impedance board is used.

1) Do not use wire-wrap boards or breadboards.
2) Do not use IC sockets; they increase parasitic capacitance and inductance.
3) Keep lines as short and as straight as possible. Do not make 90° turns; round all corners.
4) Observe high-frequency bypassing techniques to maintain the amplifier's accuracy and stability.
5) Use surface-mount components. They generally have shorter bodies and lower parasitic reactance, yielding better high-frequency performance than through-hole components.
The bypass capacitors should include a $0.1 \mu \mathrm{~F}$ ceramic surface-mount capacitor between each supply pin and the ground plane, located as close to the package as

Figure 1. Video Line Driver

225MHz,

possible. Optionally, place a $10 \mu \mathrm{~F}$ tantalum capacitor at the power-supply pins' points of entry to the PC board to ensure the integrity of incoming supplies. The power-supply trace should lead directly from the tantalum capacitor to the $V_{C C}$ and $V_{E E}$ pins.
Use surface-mount resistors for input termination and output back termination. Place the termination resistors as close to the IC as possible.

Figure 2. Switching Timing Diagram

Functional Diagram

Chip Information
TRANSISTOR COUNT: 870
PROCESS: Bipolar

225MHz, Triple, 2-Channel Video Multiplexer-Amplifier

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

225MHz, Triple, 2-Channel Video Multiplexer-Amplifier

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

